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Overview

We introduce a structure-preserving magnetic-relaxation solver that can handle arbitrary

field-line topology.

Through structure-preserving mixed finite-elements, we guarantee div B = 0 to machine
precision, energy-dissipation and helicity preservation.

High-order B-Spline bases and tools from isogeometric analysis allow exhibit rapid

convergence for regular solutions as well as non-uniform meshes.

The code is pure Python (JAX), making it very easy to install, run, and extend, as well as

performant on GPUs. It is also fully differentiable for future inverse design and optimization

applications.

Magnetic relaxation

E(B) = 1
2

∫
|B|2, (magnetic energy)

δvB = curl (v × B) (admissible variations)

δvE(B) = −
∫

(J × B) · v

set v = J × B − grad p, div v = 0:

δvE(B) = −
∫

|J × B − grad p)|2 ≤ 0

and = 0 ⇔ v = J × B − grad p = 0
Dynamics approach equilibrium.

Crucial ingredient: preservation of helicity
∫

B · curl−1B guarantees a lower bound on E(B).

Structure-preserving finite elements

Webuild on the Finite Element Exterior Calculus framework [1] to combine approximation spaces.

Some equations hold point-wise (div B = 0) and some in a L2 sense: (B, curl Λ) = (J, Λ) ∀Λ.

Discrete helicity is preserved.

Discrete energy is dissipated.

div B = 0 to machine precision.
curl grad = div curl = 0.
inf sup stability is guaranteed. 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
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(top) Continuous and discrete derivatives coincide.

(top right) No spurious Laplacian eigenvalues.

(left) Error convergence for −∆f = g on a toroid.

(bottom) Quadratic splines and their derivatives.
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Island chains
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(top) Rotating ellipse: Magnetic field after 2.5 × 104 iterations colored by pressure and rotational
transform. A (3, 5) island chain formed at the ι = 3/5 surface. (bottom left) Force decay and
preservation of force/helicity for the rotating ellipse. (bottom right) A simulation in a Tokamak

geometry. Applying radial perturbations to B leads to the formation of islands at ι ∈ {1/5, 1/4}.
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Geometries

Computations in MRX are done on a logical domain Ω̂,
where the geometry of the physical domain Ω is encoded
by a map Φ : Ω̂ → Ω. This map does not need to be flux-

aligned, but it can be chosen to be.

The structure-preserving properties hold for all such

maps, including those with a polar singularity [3]. We

currently enforce C1 regularity at the x̂1 = 0 axis. The
x̂1 = 0 axis only coincides with the magnetic axis for very
specific choices of Φ.
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For example, when x = Φ(x̂) and û(x̂) = u(Φ(x̂)), a scalar Laplace operator is given by∫
Ω

gradx u(x) · gradx v(x) dx =
∫

Ω̂
gradx̂ û(x̂) ·

(
DΦ(x̂)T DΦ(x̂)

)−1
gradx̂ v̂(x̂) det DΦ(x̂) dx̂.

Connecting to existing solvers

The optimization objective of VMEC, DESC, and GVEC is a map Φ : x̂ 7→ x that defines the
magnetic field with given magnetic fluxes. This formulation is limited to nested flux surfaces.

In MRX, the map from logical to physical domain is fixed for the entire relaxation process. We

can use an initially flux-aligned map to start from nested equilibrium configurations and study

island formation by running the relaxation from there. The preservation of global helicity does

not rule out local reconnection and changes in field-line topology.

A first interface with GVEC is implemented.

Compared to the most mature modern relaxation code SIESTA [2], the main differences are:

Language: Fortran90 → Python/JAX for ease of use and differentiability.

Discretization: Finite differences and Fourier expansions

→ Spline finite elements for structure-preservation and non-uniform meshes.

Pressure treatment: Dynamical variable with equation of state p = ργ

→ Incompressibility condition ∆p = div (J × B) to simplify the relaxation formulation.

Outlook: shape optimization

The end-to-end differentiability provides interesting opportunities.

Consider the map (r, θ) 7→ (raα(θ) cos(θ), raα(θ) sin(θ)). aα is parametrized by coefficients α.
Denote the Laplacian spectrum on Φα(Ω̂) by {λα

k}k. Then, solve the inverse problem {λα
k}k 7→ α:

min
α

∑
k |λα

k − λ∗
k|2/λ∗

k
2 such that {λα

1 , λα
2 , . . . } = eig(−∆a).

The forward problem α 7→ {λα
k}k consists of assembling L, M, followed by solving Lxk = λkMxk

for the eigenvalue/vector pairs {λk, xk}k. We compute ∂α{λα
k}k by differentiating through this

process and find α∗ using an off-the-shelf ADAM optimizer starting from a random initial guess.
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